skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zinger, Aleksey"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We describe properties of the previously constructed all-genus real Gromov-Witten theory in the style of Kontsevich-Manin’s axioms and other classical equations and reconstruction results of complex Gromov-Witten theory. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Our previous papers introduce topological notions of normal crossings symplectic divisor and variety, show that they are equivalent, in a suitable sense, to the corresponding geometric notions, and establish a topological smoothability criterion for normal crossings symplectic varieties. The present paper constructs a blowup, a complex line bundle, and a logarithmic tangent bundle naturally associated with a normal crossings symplectic divisor and determines the Chern class of the last bundle. These structures have applications in constructions and analysis of various moduli spaces. As a corollary of the Chern class formula for the logarithmic tangent bundle, we refine Aluffi’s formula for the Chern class of the tangent bundle of the blowup at a complete intersection to account for the torsion and extend it to the blowup at the deepest stratum of an arbitrary normal crossings divisor. 
    more » « less